*** 端口扫描器_ *** 设备端口扫描工具

hacker|
186

NMAP为什么扫描不到端口

NMAP是知名的 *** 端口扫描工具。但很多新人发现,使用NMAP经常扫描不出来任何端口,尤其是手机之类。这实际存在一个理解上的误区。扫描端口是为了发现主机/设备上存在的对外开放的端口,以便后期利用。为了探测端口,扫描工具会向目标发送数据包,然后根据响应包来判断端口的开启情况。如果目标不进行响应,扫描工具也就无法探测端口情况。

普通个人电脑和手机在进行 *** 数据传输的时候,会开启端口。但这时,端口处于占用状态。一旦数据发送或者接受完成,端口就自动关闭。在这个时间段内,即使扫描工具刚好向这个端口发送数据包,也不会收到响应包。只有Web、文件共享这类服务才会长期开启端口,启用监听状态后,才会对发送到该端口的包进行响应。而普通电脑和手机很少开启这类服务,所以导致扫描不出端口的情况。

如何扫描某一计算机开放的所有端口

在命令提示符中输入netstat -an可以扫描某一计算机开放的所有端口,具体步骤如下:

工具/材料:电脑

1、打开电脑,右键单击左下角开始,然后点击运行。

2、在运行的输入框里面输入cmd,然后点击确定。

3、在弹出的cmd.exe中输入netstat -an,然后敲击回车,这样就可以看到这个计算机所有开放的端口了。

端口扫描原理及工具 - 安全工具篇

"端口"是英文port的意译,可以认为是设备与外界通讯交流的出口。端口可分为虚拟端口和物理端口,其中虚拟端口指计算机内部端口,不可见。例如计算机中的80端口、21端口、23端口等。

一台拥有IP地址的主机可以提供许多服务,比如Web服务、FTP服务、 *** TP服务等,这些服务完全可以通过1个IP地址来实现。那么,主机是怎样区分不同的 *** 服务呢?显然不能只靠IP地址,因为IP 地址与 *** 服务的关系是一对多的关系。实际上是通过“IP地址+端口号”来区分不同的服务的。

因此,一个开放的端口代表一个提供的服务,不同的服务具有不同的端口号, 因此要对服务进行测试,首先要确定是否开放对应端口号 。

TCP端口和UDP端口。由于TCP和UDP 两个协议是独立的,因此各自的端口号也相互独立,比如TCP有235端口,UDP也 可以有235端口,两者并不冲突。

1、周知端口

周知端口是众所周知的端口号,范围从0到1023,其中80端口分配给WWW服务,21端口分配给FTP服务等。我们在IE的地址栏里输入一个网址的时候是不必指定端口号的,因为在默认情况下WWW服务的端口是“80”。

2、动态端口

动态端口的范围是从49152到65535。之所以称为动态端口,是因为它 一般不固定分配某种服务,而是动态分配。

3、注册端口

端口1024到49151,分配给用户进程或应用程序。这些进程主要是用户安装的程序。

1、使用Nmap工具查找ip的tcp端口

-O :获取操作系统版本信息

2、使用Nmap工具查找udp端口

-sU :表示udp scan , udp端口扫描

-Pn :不对目标进行ping探测(不判断主机是否在线)(直接扫描端口)

对于udp端口扫描比较慢,扫描完6万多个端口需要20分钟左右

3、使用Nmap工具获取端口Banner

只会返回有Banner信息的,没有则不会返回。

4、使用Nmap嗅探服务版本信息

如果没有返回banner信息的,也可以使用该 *** 尝试嗅探服务版本信息。

5、利用nmap对目标进行完整测试

在针对内容测试时,有授权的情况下,可以利用nmap对目标进行完整测试

Kali Linux *** 扫描秘籍 第三章 端口扫描(二)

执行 TCP 端口扫描的一种方式就是执行一部分。目标端口上的 TCP 三次握手用于识别端口是否接受连接。这一类型的扫描指代隐秘扫描, SYN 扫描,或者半开放扫描。这个秘籍演示了如何使用 Scapy 执行 TCP 隐秘扫描。

为了使用 Scapy 执行 TCP 隐秘 扫描,你需要一个运行 TCP *** 服务的远程服务器。这个例子中我们使用 Metasploitable2 实例来执行任务。配置 Metasploitable2 的更多信息请参考之一章中的“安装 Metasploitable2”秘籍。

此外,这一节也需要编写脚本的更多信息,请参考之一章中的“使用文本编辑器*VIM 和 Nano)。

为了展示如何执行 SYN 扫描,我们需要使用 Scapy 构造 TCP SYN 请求,并识别和开放端口、关闭端口以及无响应系统有关的响应。为了向给定端口发送 TCP SYN 请求,我们首先需要构建请求的各个层面。我们需要构建的之一层就是 IP 层:

为了构建请求的 IP 层,我们需要将 IP 对象赋给变量 i 。通过调用 display 函数,我们可以确定对象的属性配置。通常,发送和接受地址都设为回送地址, 127.0.0.1 。这些值可以通过修改目标地址来修改,也就是设置 i.dst 为想要扫描的地址的字符串值。通过再次调用 dislay 函数,我们看到不仅仅更新的目标地址,也自动更新了和默认接口相关的源 IP 地址。现在我们构建了请求的 IP 层,我们可以构建 TCP 层了。

为了构建请求的 TCP 层,我们使用和 IP 层相同的技巧。在这个立即中, TCP 对象赋给了 t 变量。像之前提到的那样,默认的配置可以通过调用 display 函数来确定。这里我们可以看到目标端口的默认值为 HTTP 端口 80。对于我们的首次扫描,我们将 TCP 设置保留默认。现在我们创建了 TCP 和 IP 层,我们需要将它们叠放来构造请求。

我们可以通过以斜杠分离变量来叠放 IP 和 TCP 层。这些层面之后赋给了新的变量,它代表整个请求。我们之后可以调用 dispaly 函数来查看请求的配置。一旦构建了请求,可以将其传递给 sr1 函数来分析响应:

相同的请求可以不通过构建和堆叠每一层来执行。反之,我们使用单独的一条命令,通过直接调用函数并传递合适的参数:

要注意当 SYN 封包发往目标 Web 服务器的 TCP 端口 80,并且该端口上运行了 HTTP 服务时,响应中会带有 TCP 标识 SA 的值,这表明 SYN 和 ACK 标识都被激活。这个响应表明特定的目标端口是开放的,并接受连接。如果相同类型的封包发往不接受连接的端口,会收到不同的请求。

当 SYN 请求发送给关闭的端口时,返回的响应中带有 TCP 标识 RA,这表明 RST 和 ACK 标识为都被激活。ACK 为仅仅用于承认请求被接受,RST 为用于断开连接,因为端口不接受连接。作为替代,如果 SYN 封包发往崩溃的系统,或者防火墙过滤了这个请求,就可能接受不到任何信息。由于这个原因,在 sr1 函数在脚本中使用时,应该始终使用 timeout 选项,来确保脚本不会在无响应的主机上挂起。

如果函数对无响应的主机使用时, timeout 值没有指定,函数会无限继续下去。这个演示中, timout 值为 1秒,用于使这个函数更加完备,响应的值可以用于判断是否收到了响应:

Python 的使用使其更易于测试变量来识别 sr1 函数是否对其复制。这可以用作初步检验,来判断是否接收到了任何响应。对于接收到的响应,可以执行一系列后续检查来判断响应表明端口开放还是关闭。这些东西可以轻易使用 Python 脚本来完成,像这样:

在这个 Python 脚本中,用于被提示来输入 IP 地址,脚本之后会对定义好的端口序列执行 SYN 扫描。脚本之后会得到每个连接的响应,并尝试判断响应的 SYN 和 ACK 标识是否激活。如果响应中出现并仅仅出现了这些标识,那么会输出相应的端口号码。

运行这个脚本之后,输出会显示所提供的 IP 地址的系统上,前 100 个端口中的开放端口。

这一类型的扫描由发送初始 SYN 封包给远程系统的目标 TCP 端口,并且通过返回的响应类型来判断端口状态来完成。如果远程系统返回了 SYN+ACK 响应,那么它正在准备建立连接,我们可以假设这个端口开放。如果服务返回了 RST 封包,这就表明端口关闭并且不接收连接。此外,如果没有返回响应,扫描系统和远程系统之间可能存在防火墙,它丢弃了请求。这也可能表明主机崩溃或者目标 IP 上没有关联任何系统。

Nmap 拥有可以执行远程系统 SYN 扫描的扫描模式。这个秘籍展示了如何使用 Namp 执行 TCP 隐秘扫描。

为了使用 Nmap 执行 TCP 隐秘扫描,你需要一个运行 TCP *** 服务的远程服务器。这个例子中我们使用 Metasploitable2 实例来执行任务。配置 Metasploitable2 的更多信息请参考之一章中的“安装 Metasploitable2”秘籍。

就像多数扫描需求那样,Nmap 拥有简化 TCP 隐秘扫描执行过程的选项。为了使用 Nmap 执行 TCP 隐秘扫描,应使用 -sS 选项,并附带被扫描主机的 IP 地址。

在提供的例子中,特定的 IP 地址的 TCP 80 端口上执行了 TCP 隐秘扫描。和 Scapy 中的技巧相似,Nmap 监听响应并通过分析响应中所激活的 TCP 标识来识别开放端口。我们也可以使用 Namp 执行多个特定端口的扫描,通过传递逗号分隔的端口号列表。

在这个例子中,目标 IP 地址的端口 21、80 和 443 上执行了 SYN 扫描。我们也可以使用 Namp 来扫描主机序列,通过标明要扫描的之一个和最后一个端口号,以破折号分隔:

在所提供的例子中,SYN 扫描在 TCP 20 到 25 端口上执行。除了拥有指定被扫描端口的能力之外。Nmap 同时拥有配置好的 1000 和常用端口的列表。我们可以执行这些端口上的扫描,通过不带任何端口指定信息来运行 Nmap:

在上面的例子中,扫描了 Nmap 定义的 1000 个常用端口,用于识别 Metasploitable2 系统上的大量开放端口。虽然这个技巧在是被多数设备上很高效,但是也可能无法识别模糊的服务或者不常见的端口组合。如果扫描在所有可能的 TCP 端口上执行,所有可能的端口地址值都需要被扫描。定义了源端口和目标端口地址的 TCP 头部部分是 16 位长。并且,每一位可以为 1 或者 0。因此,共有 2 ** 16 或者 65536 个可能的 TCP 端口地址。对于要扫描的全部可能的地址空间,需要提供 0 到 65535 的端口范围,像这样:

这个例子中,Metasploitable2 系统上所有可能的 65536 和 TCP 地址都扫描了一遍。要注意该扫描中识别的多数服务都在标准的 Nmap 1000 扫描中识别过了。这就表明在尝试识别目标的所有可能的攻击面的时候,完整扫描是个更佳实践。Nmap 可以使用破折号记法,扫描主机列表上的 TCP 端口:

这个例子中,TCP 80 端口的 SYN 扫描在指定地址范围内的所有主机上执行。虽然这个特定的扫描仅仅执行在单个端口上,Nmap 也能够同时扫描多个系统上的多个端口和端口范围。此外,Nmap 也能够进行配置,基于 IP 地址的输入列表来扫描主机。这可以通过 -iL 选项并指定文件名,如果文件存放于执行目录中,或者文件路径来完成。Nmap 之后会遍历输入列表中的每个地址,并对地址执行特定的扫描。

Nmap SYN 扫描背后的底层机制已经讨论过了。但是,Nmap 拥有多线程功能,是用于执行这类扫描的快速高效的方式。

除了其它已经讨论过的工具之外,Metasploit 拥有用于 SYN 扫描的辅助模块。这个秘籍展示了如何使用 Metasploit 来执行 TCP 隐秘扫描。

为了使用 Metasploit 执行 TCP 隐秘扫描,你需要一个运行 TCP *** 服务的远程服务器。这个例子中我们使用 Metasploitable2 实例来执行任务。配置 Metasploitable2 的更多信息请参考之一章中的“安装 Metasploitable2”秘籍。

Metasploit 拥有可以对特定 TCP 端口执行 SYN 扫描的辅助模块。为了在 Kali 中启动 Metasploit,我们在终端中执行 msfconsole 命令。

为了在 Metasploit 中执行 SYN 扫描,以辅助模块的相对路径调用 use 命令。一旦模块被选中,可以执行 show options 命令来确认或修改扫描配置。这个命令会展示四列的表格,包括 name 、 current settings 、 required 和 description 。 name 列标出了每个可配置变量的名称。 current settings 列列出了任何给定变量的现有配置。 required 列标出对于任何给定变量,值是否是必须的。 description 列描述了每个变量的功能。任何给定变量的值可以使用 set 命令,并且将新的值作为参数来修改。

在上面的例子中, RHOSTS 值修改为我们打算扫描的远程系统的 IP 地址。地外,线程数量修改为 20。 THREADS 的值定义了在后台执行的当前任务数量。确定线程数量涉及到寻找一个平衡,既能提升任务速度,又不会过度消耗系统资源。对于多数系统,20 个线程可以足够快,并且相当合理。 PORTS 值设为 TCP 端口 80(HTTP)。修改了必要的变量之后,可以再次使用 show options 命令来验证。一旦所需配置验证完毕,就可以执行扫描了。

上面的例子中,所指定的远程主机的钱 100 个 TCP 端口上执行了 TCP SYN 扫描。虽然这个扫描识别了目标系统的多个设备,我们不能确认所有设备都识别出来,除非所有可能的端口地址都扫描到。定义来源和目标端口地址的TCP 头部部分是 16 位长。并且,每一位可以为 1 或者 0。因此,共有 2 ** 16 或 65536 个可能的 TCP 端口地址。对于要扫描的整个地址空间,需要提供 0 到 65535 的 端口范围,像这样:

在这个李忠,远程系统的所有开放端口都由扫描所有可能的 TCP 端口地址来识别。我们也可以修改扫描配置使用破折号记法来扫描地址序列。

这个例子中,TCP SYN 扫描执行在由 RHOST 变量指定的所有主机地址的 80 端口上。与之相似, RHOSTS 可以使用 CIDR 记法定义 *** 范围。

Metasploit SYN 扫描辅助模块背后的底层原理和任何其它 SYN 扫描工具一样。对于每个被扫描的端口,会发送 SYN 封包。SYN+ACK 封包会用于识别活动服务。使用 MEtasploit 可能更加有吸引力,因为它拥有交互控制台,也因为它是个已经被多数渗透测试者熟知的工具。

除了我们之前学到了探索技巧,hping3 也可以用于执行端口扫描。这个秘籍展示了如何使用 hping3 来执行 TCP 隐秘扫描。

为了使用 hping3 执行 TCP 隐秘扫描,你需要一个运行 TCP *** 服务的远程服务器。这个例子中我们使用 Metasploitable2 实例来执行任务。配置 Metasploitable2 的更多信息请参考之一章中的“安装 Metasploitable2”秘籍。

除了我们之前学到了探索技巧,hping3 也可以用于执行端口扫描。为了使用 hping3 执行端口扫描,我们需要以一个整数值使用 --scan 模式来指定要扫描的端口号。

上面的例子中,SYN 扫描执行在指定 IP 地址的 TCP 端口 80 上。 -S 选项指明了发给远程系统的封包中激活的 TCP 标识。表格展示了接收到的响应封包中的属性。我们可以从输出中看到,接收到了SYN+ACK 响应,所以这表示目标主机端口 80 是开放的。此外,我们可以通过输入够好分隔的端口号列表来扫描多个端口,像这样:

在上面的扫描输出中,你可以看到,仅仅展示了接受到 SYN+ACK 标识的结果。要注意和发送到 443 端口的 SYN 请求相关的响应并没有展示。从输出中可以看出,我们可以通过使用 -v 选项增加详细读来查看所有响应。此外,可以通过传递之一个和最后一个端口地址值,来扫描端口范围,像这样:

这个例子中,100 个端口的扫描足以识别 Metasploitable2 系统上的服务。但是,为了执行 所有 TCP 端口的扫描,需要扫描所有可能的端口地址值。定义了源端口和目标端口地址的 TCP 头部部分是 16 位长。并且,每一位可以为 1 或者 0。因此,共有 2 ** 16 或者 65536 个可能的 TCP 端口地址。对于要扫描的全部可能的地址空间,需要提供 0 到 65535 的端口范围,像这样:

hping3 不用于一些已经提到的其它工具,因为它并没有 SYN 扫描模式。但是反之,它允许你指定 TCP 封包发送时的激活的 TCP 标识。在秘籍中的例子中, -S 选项让 hping3 使用 TCP 封包的 SYN 标识。

在多数扫描工具当中,TCP 连接扫描比 SYN 扫描更加容易。这是因为 TCP 连接扫描并不需要为了生成和注入 SYN 扫描中使用的原始封包而提升权限。Scapy 是它的一大例外。Scapy 实际上非常难以执行完全的 TCP 三次握手,也不实用。但是,出于更好理解这个过程的目的,我们来看看如何使用 Scapy 执行连接扫描。

为了使用 Scapy 执行全连接扫描,你需要一个运行 UDP *** 服务的远程服务器。这个例子中我们使用 Metasploitable2 实例来执行任务。配置 Metasploitable2 的更多信息请参考之一章中的“安装 Metasploitable2”秘籍。

此外,这一节也需要编写脚本的更多信息,请参考之一章中的“使用文本编辑器*VIM 和 Nano)。

Scapy 中很难执行全连接扫描,因为系统内核不知道你在 Scapy 中发送的请求,并且尝试阻止你和远程系统建立完整的三次握手。你可以在 Wireshark 或 tcpdump 中,通过发送 SYN 请求并嗅探相关流量来看到这个过程。当你接收到来自远程系统的 SYN+ACK 响应时,Linux 内核会拦截它,并将其看做来源不明的响应,因为它不知道你在 Scapy 中 发送的请求。并且系统会自动使用 TCP RST 封包来回复,因此会断开握手过程。考虑下面的例子:

这个 Python 脚本的例子可以用做 POC 来演系统破坏三次握手的问题。这个脚本假设你将带有开放端 *** 动系统作为目标。因此,假设 SYN+ACK 回复会作为初始 SYN 请求的响应而返回。即使发送了最后的 ACK 回复,完成了握手,RST 封包也会阻止连接建立。我们可以通过观察封包发送和接受来进一步演示。

在这个 Python 脚本中,每个发送的封包都在传输之前展示,并且每个收到的封包都在到达之后展示。在检验每个封包所激活的 TCP 标识的过程中,我们可以看到,三次握手失败了。考虑由脚本生成的下列输出:

在脚本的输出中,我们看到了四个封包。之一个封包是发送的 SYN 请求,第二个封包时接收到的 SYN+ACK 回复,第三个封包时发送的 ACK 回复,之后接收到了 RST 封包,它是最后的 ACK 回复的响应。最后一个封包表明,在建立连接时出现了问题。Scapy 中可能能够建立完成的三次握手,但是它需要对本地 IP 表做一些调整。尤其是,如果你去掉发往远程系统的 TSR 封包,你就可以完成握手。通过使用 IP 表建立过滤机制,我们可以去掉 RST 封包来完成三次握手,而不会干扰到整个系统(这个配置出于功能上的原理并不推荐)。为了展示完整三次握手的成功建立,我们使用 Netcat 建立 TCP 监听服务。之后尝试使用 Scapy 连接开放的端口。

这个例子中,我们在 TCP 端口 4444 开启了监听服务。我们之后可以修改之前的脚本来尝试连接 端口 4444 上的 Netcat 监听服务。

这个脚本中,SYN 请求发送给了监听端口。收到 SYN+ACK 回复之后,会发送 ACK回复。为了验证连接尝试被系统生成的 RST 封包打断,这个脚本应该在 Wireshark 启动之后执行,来捕获请求蓄力。我们使用 Wireshark 的过滤器来隔离连接尝试序列。所使用的过滤器是 tcp (ip.src == 172.16.36.135 || ip.dst == 172.16.36.135) 。过滤器仅仅用于展示来自或发往被扫描系统的 TCP 流量。像这样:

既然我们已经精确定位了问题。我们可以建立过滤器,让我们能够去除系统生成的 RST 封包。这个过滤器可以通过修改本地 IP 表来建立:

在这个例子中,本地 IP 表的修改去除了所有发往被扫描主机的目标地址的 TCP RST 封包。 list 选项随后可以用于查看 IP 表的条目,以及验证配置已经做了修改。为了执行另一次连接尝试,我们需要确保 Natcat 仍旧监听目标的 4444 端口,像这样:

和之前相同的 Python 脚本可以再次使用,同时 WIreshark 会捕获后台的流量。使用之前讨论的显示过滤器,我们可以轻易专注于所需的流量。要注意三次握手的所有步骤现在都可以完成,而不会收到系统生成的 RST 封包的打断,像这样:

此外,如果我们看一看运行在目标系统的 Netcat 服务,我们可以注意到,已经建立了连接。这是用于确认成功建立连接的进一步的证据。这可以在下面的输出中看到:

虽然这个练习对理解和解决 TCP 连接的问题十分有帮助,恢复 IP 表的条目也十分重要。RST 封包 是 TCP 通信的重要组成部分,去除这些响应会影响正常的通信功能。洗唛按的命令可以用于刷新我们的 iptable 规则,并验证刷新成功:

就像例子中展示的那样, flush 选项应该用于清楚 IP 表的条目。我们可以多次使用 list 选项来验证 IP 表的条目已经移除了。

执行 TCP 连接扫描的同居通过执行完整的三次握手,和远程系统的所有被扫描端口建立连接。端口的状态取决于连接是否成功建立。如果连接建立,端口被认为是开放的,如果连接不能成功建立,端口被认为是关闭的。

怎样使用端口扫描工具

9.com/Soft/HTML/20220.html" target="_blank"

X-Scan-v3.3

一. 系统要求:Windows NT/2000/XP/2003

理论上可运行于Windows NT系列操作系统,推荐运行于Windows 2000以上的Server版Windows系统。

二. 功能简介:

采用多线程方式对指定IP地址段(或单机)进行安全漏洞检测,支持插件功能。扫描内容包括:远程服务类型、操作系统类型及版本,各种弱口令漏洞、后门、应用服务漏洞、 *** 设备漏洞、拒绝服务漏洞等二十几个大类。

superscan 4.0 汉化版

此版本增加了很多功能,可以自定义端口列表,扫描方式

0条大神的评论

发表评论